<div dir="ltr"><div>Hi <span class="gmail-il">HamSCI</span>,<br><br>This week is our bi-weekly <span class="gmail-il">HamSCI</span> <span class="gmail-il">telecon</span> on Thursday, <b> Mar 4th </b>at 2000z / 3 PM Eastern.<br><br>Here is the link: <a href="https://scranton.zoom.us/j/286316405?pwd=QWdwMlFPbDlYeXg5ZDg1dmYzeFdCUT09" target="_blank">https://scranton.zoom.us/j/286316405?pwd=QWdwMlFPbDlYeXg5ZDg1dmYzeFdCUT09</a><br><br>If you are asked for a password, it is “<span class="gmail-il">hamsci</span>”.<br><br>Diego Sanchez, will give us an update on his recent results from high frequency amateur radio transmissions.<br><br>Best,<br>Dev<br><br>-------------------------------------------------------------------------------------------------------------------------<br><p class="gmail-western" style="margin-bottom:0in;line-height:100%;font-size:12pt;direction:ltr;text-align:left;background:transparent">
<font size="4" style="font-size:14pt"><b>Using high frequency
amateur radio transmissions to detect and study travelling
ionospheric disturbances</b></font></p><p class="gmail-western" style="margin-bottom:0in;line-height:100%;font-size:12pt;direction:ltr;text-align:left;background:transparent">D.
Sanchez<sup>1,2</sup>, N. A. Frissell<sup>3</sup>, G. W. Perry<sup>1</sup>,
A. Coster<sup>4</sup>, P. J. Erickson<sup>4</sup>, W. Engelke<sup>5</sup>,
J. M. Ruohoniemi<sup>6</sup>, and J. B. H. Baker<sup>6</sup></p><p class="gmail-western" style="margin-bottom:0in;line-height:100%;font-size:12pt;direction:ltr;text-align:left;background:transparent"><sup style="background-color:transparent">1</sup><span style="background-color:transparent;font-size:12pt">Center
for Solar-Terrestrial Research, New Jersey Institute of Technology,
Newark, NJ, USA</span><br></p><p class="gmail-western" style="margin-bottom:0in;line-height:100%;font-size:12pt;direction:ltr;text-align:left;background:transparent"><sup>2</sup>Essex
County College, Newark, NJ, USA</p><p class="gmail-western" style="margin-bottom:0in;line-height:100%;font-size:12pt;direction:ltr;text-align:left;background:transparent"><sup>3</sup>University
of Scranton, Scranton, PA, USA</p><p class="gmail-western" style="margin-bottom:0in;line-height:100%;font-size:12pt;direction:ltr;text-align:left;background:transparent"><sup>4</sup>MIT
Haystack Observatory, Westford, MA, USA</p><p class="gmail-western" style="margin-bottom:0in;line-height:100%;font-size:12pt;direction:ltr;text-align:left;background:transparent"><sup style="background-color:transparent">5</sup><span style="background-color:transparent;font-size:12pt">University of Alabama, Tuscaloosa, AL, USA</span></p><p class="gmail-western" style="margin-bottom:0in;line-height:100%;font-size:12pt;direction:ltr;text-align:left;background:transparent"><sup style="background-color:transparent">6</sup><span style="background-color:transparent;font-size:12pt">Virginia Tech., Blacksburg, VA, USA</span></p><p class="gmail-western" style="margin-bottom:0in;line-height:100%;font-size:12pt;direction:ltr;text-align:left;background:transparent"><span style="background-color:transparent;font-size:12pt"><br></span></p><p class="gmail-western" style="margin-bottom:0in;line-height:100%;font-size:12pt;text-align:left;background:transparent"><span style="background-color:transparent;font-size:12pt">Citizen
radio science is an emerging field largely driven by the
proliferation of software defined radio systems, the reduction in
cost of radio hardware, and the technical expertise and tireless
passion of the amateur radio community. Two remarkable examples of
the amateur radio community’s ingenuity are the Weak Signal
Propagation Report Network (WSPRnet) and Reverse Beacon Network
(RBN). The former is a digital signal protocol that allows for the
identification of open propagation high frequency (HF; 3 – 30 MHz)
radio channels between amateur operators, while the latter is a
passive receiver network that detects HF amateur radio transmissions
and records metadata related to each transmission. In this work, we
demonstrate how data collected by both projects can be used to detect
and study large scale travelling ionospheric disturbances (LSTIDs)
over the contiguous United States. First, in a case study, we show
that the LSTIDs signatures detected with WSPRnet and RBN are also
present in contemporaneous Global Navigation Satellite System (GNSS)
and ionosonde measurements. Then, we present the results of an
analysis of 2017 WSPRnet and RBN data to show that the LSTIDs are
more often present during the winter months (November through
February), which is consistent with previous work based on Super Dual
Auroral Radar Network (SuperDARN) measurements. A clear benefit of
the WSPRnet and RBN citizen science observations is that they enable
the expansion of the coverage area for the detection of TIDs and
other solar-terrestrial physics phenomena to mid and low geographic
latitudes, complementing the measurements provided by other
instruments such as SuperDARN, whose coverage is more concentrated to
higher latitudes, where fewer WSPRnet and RBN nodes exist due to the
sparse population of these regions.</span><br></p><p class="gmail-western" style="margin-bottom:0in;line-height:100%;font-size:12pt;direction:ltr;text-align:left;background:transparent"><br>
</p><p style="color:rgb(0,0,0);font-family:"Times New Roman";font-size:medium">
</p><p class="gmail-western" style="margin-bottom:0in;line-height:100%;font-size:12pt;direction:ltr;background:transparent"><span style="font-size:small">------------------------------</span><span style="font-size:small">----------------</span><br></p>Dev Joshi, Ph.D., KC3PVE<br>Postdoctoral Research Associate<br>Department of Physics and Engineering<br>The University of Scranton<br>C: 617 775 9712<br></div><div><br></div></div>